Kentucky Academic Standards
 Mathematics

INTRODUCTION

Background

In order to create, support and sustain a culture of equity and access across Kentucky, teachers must ensure the diverse needs of all learners are met. Educational objectives must take into consideration students' backgrounds, experiences, cultural perspectives, traditions and knowledge. Acknowledging and addressing factors that contribute to different outcomes among students are critical to ensuring all students routinely have opportunities to experience high-quality mathematics instruction, learn challenging mathematics content and receive the necessary support to be successful. Addressing equity and access includes both ensuring all students attain mathematics proficiency and achieving an equitable percentage of all students attaining the highest levels of mathematics achievement (Adapted from the National Council of Teachers of Mathematics Equity and Access Position, 2018).

Kentucky's Vision for Students

Knowledge about mathematics and the ability to apply mathematics to solve problems in the real world directly align with the Kentucky Board of Education's (KBE) vision that "each and every student is empowered and equipped to pursue a successful future." To equip and empower students, the following capacity and goal statements frame instructional programs in Kentucky schools. They were established by the Kentucky Education Reform Act (KERA) of 1990, as found in Kentucky Revised Statute (KRS) 158.645 and KRS 158.6451 . All students shall have the opportunity to acquire the following capacities and learning goals:

- Communication skills necessary to function in a complex and changing civilization;
- Knowledge to make economic, social and political choices;
- Understanding of governmental processes as they affect the community, the state and the nation;
- Sufficient self-knowledge and knowledge of their mental health and physical wellness;
- Sufficient grounding in the arts to enable each student to appreciate their cultural and historical heritage;
- Sufficient preparation to choose and pursue their life's work intelligently; and
- Skills to enable students to compete favorably with students in other states and other parts of the world

Furthermore, schools shall:

- Expect a high level of achievement from all students.
- Develop their students' ability to:
- Use basic communication and mathematics skills for purposes and situations they will encounter throughout their lives;
- Apply core concepts and principles from mathematics, the sciences, the arts, the humanities, social studies, English/language arts, health, practical living, including physical education, to situations they will encounter throughout their lives;
- Become self-sufficient individuals;
- Become responsible members of a family, work group or community as well as an effective participant in community service;
- Think and solve problems in school situations and in a variety of situations they will encounter in life;
- Connect and integrate experiences and new knowledge from all subject matter fields with what students have previously learned and build on past learning experiences to acquire new information through various media sources;
- Express their creative talents and interests in visual arts, music, dance, and dramatic arts.
- Increase student attendance rates.
- Reduce dropout and retention rates.
- Reduce physical and mental health barriers to learning.
- Be measured on the proportion of students who make a successful transition to work, postsecondary education and the military.

To ensure legal requirements of these courses are met, the Kentucky Department of Education (KDE) encourages schools to use the Model Curriculum Framework to inform development of curricula related to these courses. The Model Curriculum Framework encourages putting the student at the center of planning to ensure that
...the goal of such a curriculum is to produce students that are ethical citizens in a democratic global society and to help them become selfsufficient individuals who are prepared to succeed in an ever-changing and diverse world. Design and implementation requires professionals to accommodate the needs of each student and focus on supporting the development of the whole child so that all students have equitable access to opportunities and support for maximum academic, emotional, social and physical development.
(Model Curriculum Framework, page 19)

Legal Basis

The following Kentucky Administrative Regulations (KAR) provide a legal basis for this publication:

704 KAR 8:040 Kentucky Academic Standards for Mathematics

Senate Bill 1 (2017) calls for the KDE to implement a process for establishing new, as well as reviewing all approved academic standards and aligned assessments beginning in the 2017-18 school year. The current schedule calls for content areas to be reviewed each year and every six years thereafter on a rotating basis.

The KDE collects public comment and input on all of the draft standards for 30 days prior to finalization.
Senate Bill 1 (2017) called for content standards that

- focus on critical knowledge, skills and capacities needed for success in the global economy;
- result in fewer but more in-depth standards to facilitate mastery learning;
- communicate expectations more clearly and concisely to teachers, parents, students and citizens;
- are based on evidence-based research;
- consider international benchmarks; and
- ensure the standards are aligned from elementary to high school to postsecondary education so students can be successful at each education level.

704 KAR 8:040 adopts into law the Kentucky Academic Standards for Mathematics.

Standards Creation Process

The standards creation process focused heavily on educator involvement. Kentucky's teachers understand elementary and secondary academic standards must align with postsecondary readiness standards and with state career and technical education standards. This process helped to ensure students are prepared for the jobs of the future and can compete with those students from other states and nations.

The Mathematics Advisory Panel was composed of twenty-four teachers, three public post-secondary professors from institutions of higher education and two community members. The function of the Advisory Panel was to review the standards and make recommendations for changes to a Review Development Committee. The Mathematics Standards Review and Development Committee was composed of eight teachers, two public post-secondary professors from institutions of higher education and two community members. The function of the Review and Development Committee was to review findings and make recommendations to revise or replace existing standards.

Members of the Advisory Panels and Review and Development Committee were selected based on their expertise in the area of mathematics, as well as being a practicing teacher in the field of mathematics. The selection committee considered statewide representation, as well as both public secondary and higher education instruction, when choosing writers (Appendix B).

Writers' Vision Statement

The Kentucky Mathematics Advisory Panel and the Review and Development Committee shared a vision for Kentucky's students. In order to equip students with the knowledge and skills necessary to succeed beyond K-12 education, the writers consistently placed students at the forefront of the Mathematics standards revision and development work. The driving question was simple, "What is best for Kentucky students?" The writers believed the proposed revisions will lead to a more coherent, rigorous set of Kentucky Academic Standards for Mathematics. These standards differ from previous standards in that they intentionally integrate content and practices in such a way that every Kentucky student will benefit mathematically. Each committee member strived to enhance the standards' clarity and function so Kentucky teachers would be better equipped to provide high quality mathematics for each and every student. The resulting document is the culmination of the standards revision process: the production of a high quality set of mathematics standards to enable graduates to live, compete and succeed in life beyond K-12 education.

The KDE provided the following foundational documents to inform the writing team's work:

- Review of state academic standards documents (Arizona, California, Indiana, Iowa, Kansas, Massachusetts, New York, North Carolina and other content standards).

Additionally, participants brought their own knowledge to the process, along with documents and information from the following:

- Clements, D. (2018). Learning and teaching with learning trajectories. Retrieved from: http:www.learningtrajectories.org/.
- Van De Walle, J., Karp, K., \& Bay Williams, J. (2019). Elementary and middle school mathematics teaching developmentally tenth edition. New York, NY: Pearson.
- Achieve. (2017). Strong standards: A review of changes to state standards since the Common Core. Washington, DC. Achieve.

The standards also were informed by feedback from the public and mathematics community. When these standards were open for public feedback, 2,704 comments were provided through two surveys. Furthermore, these standards received feedback from Kentucky higher education members and current mathematics teachers. At each stage of the feedback process, data-informed changes were made to ensure the standards would focus on critical knowledge, skills and capacities needed for success in the global economy.

Design Considerations

The K-12 mathematics standards were designed for students to become mathematically proficient. By aligning to early numeracy trajectories which are levels that follow a developmental progressions based on research, focusing on conceptual understanding and building from procedural skill and fluency, students will perform at the highest cognitive demand-solving mathematical situations using the modeling cycle.

- Early numeracy trajectories provide mathematical goals for students based on research through problem solving, reasoning, representing and communicating mathematical ideas. Students move through these progressions in order to view mathematics as sensible, useful and worthwhile to view themselves as capable of thinking mathematically. (Building Blocks-Foundations for Mathematical Thinking, PreKindergarten to Grade 2: Research-based Materials Development [National Science Foundation, grant number ESI-9730804; see www.gse.buffalo.edu/org/buildingblocks/).
- Conceptual understanding refers to understanding mathematical concepts, operations and relations. Conceptual understanding is more than knowing isolated facts and methods; students should be able to make sense of why a mathematical idea is important and the kinds of contexts in which it is useful. Conceptual understanding allows students to connect prior knowledge to new ideas and concepts. (Adapted from National Research Council. (2001). Adding it up: Helping children learn mathematics. J.Kilpatrick, J. Swafford and B.Findell (Eds.). Mathematics Learning Study Committee, Center for Education, Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.)
- Procedural skill and fluency is the ability to apply procedures accurately, efficiently, flexibly and appropriately. It requires speed and accuracy in calculation while giving students opportunities to practice basic skills. Students' ability to solve more complex application and modeling tasks is dependent on procedural skill and fluency (National Council Teachers of Mathematics, 2014).

Fluency in Mathematics

Wherever the word fluently appears in a content standard, the meaning denotes efficiency, accuracy, flexibility and appropriateness. Being fluent means students flexibly choose among methods and strategies to solve contextual and mathematical problems, understand and explain their approaches and produce accurate answers efficiently.

Efficiency-carries out easily, keeps track of sub-problems and makes use of intermediate results to solve the problem.

Accuracy-produces the correct answer reliably.
Flexibility-knows more than one approach, chooses a viable strategy and uses one method to solve and another method to double check.

Appropriately—knows when to apply a particular procedure.

- Application provides a valuable context for learning and the opportunity to solve problems in a relevant and a meaningful way. It is through real-world application that students learn to select an efficient method to find a solution, determine whether the solution(s) makes sense by reasoning and develop critical thinking skills.
- The Modeling Cycle is essential in providing opportunities for students to reason and problem solve. In the course of a student's mathematics education, the word "model" is used in a variety of ways. Several of these, such as manipulatives, demonstration, role modeling and conceptual models of mathematics, are valuable tools for teaching and learning; however, these examples are different from the practice of mathematical modeling. Mathematical modeling, both in the workplace and in school, uses mathematics to answer questions using real-world context. Within the standards document, the mathematical modeling process could be used with standards that include the phrase "solve real-world problems." (GAIMME: Guidelines for Assessment and Instruction in Mathematical Modeling Education, Sol Garfunkel and Michelle Montgomery, editors, COMAP and SIAM, Philadelphia, 2016. View the entire report, available freely online, at https://siam.org/Publications/Reports/Detail/Guidelines-for-Assessment-and-Instruction-in-Mathematical-Modeling-Education).

The Modeling Process

The Kentucky Academic Standards for Mathematics declare Mathematical Modeling is a process made up of the following components:
Identify the problem: Students identify something in the real world they want to know, do or understand. The result is a question in the real world.
Make assumptions and identify variables: Students select information important in the question and identify relations between them. They decide what information and relationships are relevant, resulting in an idealized version of the original question.

Do the math: Students translate the idealized version into mathematical terms and obtain a mathematical formulation of the idealized question. This formulation is the model. They do the math to derive insights and results.

Analyze and assess the solution: Students consider the following questions: Does it address the problem? Does it make sense when applied in the real world? Are the results practical? Are the answers reasonable? Are the consequences acceptable?

Iterate: Students iterate the process as needed to refine and extend a model.
Implement the model: Students report results to others and implement the solution as part of real-world, practical applications.
Mathematical modeling often is pictured as a cycle, with a need to come back frequently to the beginning and make new assumptions to get closer to a usable result. Mathematical modeling is an iterative problem-solving process and therefore is not referenced by individual steps. The following representation reflects that a modeler often bounces back and forth through the various stages.

STANDARDS USE AND DEVELOPMENT

The Kentucky Academic Standards (KAS) are Standards, not Curriculum

The Kentucky Academic Standards for Mathematics do not dictate curriculum or teaching methods; learning opportunities and pathways will continue to vary across schools and school systems and educators should make every effort to meet the needs of individual students, based on their pedagogical and professional impressions and information. The order in which the standards are presented is not the order in which the standards need to be taught. Standards from various domains are connected and educators will need to determine the best overall design and approach, as well as the instructional strategies needed to support their learners to attain grade-level expectations and the knowledge articulated in the standards.

A standard represents a goal or outcome of an educational program. The standards do not dictate the design of a lesson or how units should be organized. The standards establish what students should know and be able to do at the conclusion of a course. The instructional program should emphasize the development of students' abilities to acquire and apply the standards. The curriculum must assure appropriate accommodations are made for diverse populations of students found within Kentucky schools.

These standards are not a set of instructional or assessment tasks, rather statements of what students should be able to do after instruction. Decisions on how best to help students meet these program goals are left to local school districts and teachers.

Translating the Standards into Curriculum

The KDE does not require specific curriculum or strategies to be used to teach the Kentucky Academic Standards (KAS). Local schools and districts choose to meet those minimum required standards using a locally adopted curriculum. As educators implement academic standards, they, along with community members, must guarantee 21st-century readiness to ensure all learners are transition-ready. To achieve this, Kentucky students need a curriculum designed and structured for a rigorous, relevant and personalized learning experience, including a wide variety of learning opportunities. The Kentucky Model Curriculum Framework serves as a resource to help an instructional supervisor, principal and/or teacher leader revisit curriculum planning, offering background information and exercises to generate "future-oriented" thinking while suggesting a process for designing and reviewing the local curriculum.

Organization of the Standards

The Kentucky Academic Standards for Mathematics reflect revisions, additions, coherence/vertical alignment and clarifications to ensure student proficiency in mathematics. The architecture of the K-12 standards has an overall structure that emphasizes essential ideas or conceptual categories in mathematics. The standards emphasize the importance of the mathematical practices; whereby, equipping students to reason and problem solve. To encourage the relationship between the standards for mathematical practice and content standards, both the Advisory Panel and the Review and Assessment Development Committee intentionally highlighted possible connections, as well as provided cluster level examples of what this relationship may look like for Kentucky students. The use of mathematical practices demonstrates various applications of the standards and encourages a deeper understanding of the content.

The standards also emphasize procedural skill and fluency, building from conceptual understandings to application and modeling with mathematics, in order to solve real world problems. Therefore, both committees decided to incorporate the clarifications section to communicate expectations more clearly and concisely to teachers, parents, students and stakeholders through examples and illustrations. The standards are sequenced in a way that make mathematical sense and are based on the progressions for how students learn. To emphasize the cohesiveness of the K-12 standards, both committees decided to include Coherence/Vertical Alignment indicating a mathematics connection within and across grade levels.

- The K-5 standards maintain a focus on arithmetic, providing a solid foundation for later mathematical studies and expect students to know single-digit sums and products from memory, not memorization.
- The $6-8$ standards serve as the foundation for much of everyday mathematics, which serve as the connection between earlier work in arithmetic and the future work of the mathematical demands in high school.
- The high school standards are complex and based on conceptual categories with a special emphasis on modeling (indicated with a star) which encompasses the process by which mathematics is used to describe the real world.

How to Read the Standards for Mathematical Content and the Standards for Mathematical Practice

Domains are large groups of related standards. Standards from different domains sometimes may be closely related.
Clusters summarize groups of related standards. Note that standards from different clusters sometimes may be closely related, because mathematics is a connected subject.

Standards for Mathematical Content define what students should understand and be able to do.
Standards for Mathematical Practice define how students engage in mathematical thinking.
The standards for mathematical content and the standards for mathematical practice are the sections of the document that identify the critical knowledge and skills for which students must demonstrate mastery by the end of each grade level.

K-8 CODING

Additional High School Coding

Plus (+) Standards: Additional mathematics concepts students should learn in order to take advanced courses such as calculus, advanced statistics or discrete mathematics are indicated by (+) symbol.

Plus Plus (++) Standards: Indicate a standard that is optional even for calculus.

Modeling Standards: Modeling is best interpreted not as a collection of isolated topics, but rather in relation to other standards. Making mathematical models is a Standard for Mathematical Practice and specific modeling standards appear throughout the high school standards indicated by a star symbol (\star). The star symbol sometimes appears on the heading for a group of standards; in that case, it should be understood to apply to all standards in that group.

Standards for Mathematical Practices

The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with longstanding importance in mathematics education. The first of these are the National Council of Teachers of Mathematics (NCTM) process standards of problem solving, reasoning and proof, communication, representation and connections. The second are the strands of mathematical proficiency specified in the National Research Council's 2001 report Adding It Up: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately) and productive disposition (habitual inclination to see mathematics as sensible, useful and worthwhile, coupled with a belief in diligence and one's own efficacy).

1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway, rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order
to gain insight into its solution. They monitor and evaluate their progress and change course, if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables and graphs, or draw diagrams of important features and relationships, graph data and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method and they continually ask themselves, "Does this make sense?" They can understand other approaches to solving complex problems and identify correspondences between different approaches.

2. Reason abstractly and quantitatively.

Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students also are able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense and ask useful questions to clarify or improve the arguments.

4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems that arise in everyday life. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making
assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

5. Use appropriate tools strategically.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package or dynamic geometry software. Proficient students are sufficiently familiar with appropriate tools to make sound decisions about when each of these tools might be helpful, recognizing both the potential for insight and limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know technology can enable them to visualize the results of varying assumptions, explore consequences and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

6. Attend to precision.

Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussions with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, and express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students provide carefully formulated explanations to each other. By the time they reach high school, they can examine claims and make explicit use of definitions.

7. Look for and make use of structure.

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well-remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+$ $9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also are able to shift perspectives. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

8. Look for and express regularity in repeated reasoning.

Mathematically proficient students notice if calculations are repeated and look both for general methods and shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $(y-2) /(x-1)=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$ and $(x-1)\left(x^{3}+x 2+x+1\right)$ might lead to awareness of the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

Connecting the Standards for Mathematical Practice to the Standards for Mathematical Content

The Standards for Mathematical Practice describe ways in which developing student practitioners of mathematics should increasingly engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle and high school years. Designers of curricula, assessments and professional development should attend to the need to connect the mathematical practices to mathematical content in mathematics instruction.

The Standards for Mathematical Content are a balanced combination of procedure, understanding and application. Expectations that begin with the word "understand" are often good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices.

In this respect, those content standards which set an expectation of understanding are potential "points of intersection" between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources and innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development and student achievement in mathematics.

Supplementary Materials to the Standards

The Kentucky Academic Standards for Mathematics are the result of educator involvement and public feedback. Short summaries of each of the appendices are listed below.

Appendix A: Tables

Mathematic tables are used throughout the Kentucky Academic Standards for Mathematics to provide clarity to the standards.

Kentucky Academic Standards for Mathematics: Grade 1 Overview

Operations/Algebraic Thinking (OA)	Number and Operations in Base Ten (NBT)	Measurement and Data (MD)	Geometry (G)
Represent and solve problems involving addition and subtraction. Understand an apply properties of operations and the relationship between addition and subtraction. Add and subtract within 20. Work with addition and subtraction equations.	- Extend the counting sequence. - Understand place value. - Use place value understanding and properties of operations to add and subtract.	- Measure lengths indirectly and by iterating length in units. - Work with time and money. - Understand and apply the statistics process.	- Reason with shapes and their attributes.

In grade 1, instructional time should focus on four critical areas:

1. In the Operations and Algebraic Thinking domain, students will:

- develop strategies for adding and subtracting whole numbers based on their prior work with small numbers;
- use a variety of models, including discrete objects and length-based models (e.g., cubes connected to form lengths), to model add-to, take-from, puttogether, take apart and compare situations to develop meaning for the operations of addition and subtraction, and to develop strategies to solve arithmetic problems with these operations;
- understand connections between counting and addition and subtraction (e.g., adding two is the same as counting on two);
- use properties of addition to add whole numbers and to create and use increasingly sophisticated strategies based on these properties (e.g., "making tens") to solve addition and subtraction problems within 20; and
- build their understanding of the relationship between addition and subtraction by comparing a variety of solution strategies.

2. In the Number and Operations in Base Ten domain, students will:

- develop, discuss and use efficient, accurate and generalizable methods to add within 100 and subtract multiples of 10;
- compare whole numbers (at least to 100) to develop understanding of and solve problems involving their relative sizes;
- think of whole numbers between 10 and 100 in terms of tens and ones (especially recognizing the numbers 11 to 19 as composed of a ten and some ones); and
- understand the order of the counting numbers and their relative magnitudes through activities that build number sense.

3. In the Measurement and Data domain, students will:

- develop an understanding of the meaning and processes of measurement, including underlying concepts such as iterating (the mental activity of building up the length of an object with equal-sized units) and the transitivity principle for indirect measurement.*

4. In the Geometry domain, students will:

- compose and decompose plane or solid figures and build understanding of part-whole relationships as well as the properties of the original and composite shapes;
- recognize them from different perspectives and orientations;
- describe their geometric attributes;
- determine how they are alike and different, to develop the background for measurement and for initial understandings of properties such as congruence and symmetry.

Standards for Mathematical Practice

MP.1. Make sense of problems and persevere in solving them.
MP.2. Reason abstractly and quantitatively.
MP.3. Construct viable arguments and critique the reasoning of others.
MP.4. Model with mathematics.

MP.5. Use appropriate tools strategically.
MP.6. Attend to precision.
MP.7. Look for and make use of structure.
MP.8. Look for and express regularity in repeated reasoning.

Cluster: Represent and solve problems using addition and subtraction.

Standards	Clarifications
KY.1.OA.1 Use addition and subtraction within 20 to solve word problems involving situations of adding to, taking from, putting together, taking apart and comparing, with unknowns in all positions. MP. 1, MP.2	Students flexibly model or represent addition and subtraction situations or context problems (involving sums and differences up to 20). See Table 1 in Appendix A. Note: Drawings need not show detail, but accurately represent the quantities involved in the task.
KY.1.OA.2 Solve word problems that call for addition of three whole numbers whose sum is less than or equal to 20, by using objects, drawings and equations with a symbol for one unknown number to represent the problem. MP. 1, MP.4, MP.5	Students flexibly model or represent addition situations or context problems (involving adding three quantities and have a sum less than or equal to 20). Note: Drawings need not show detail, but accurately represent the quantities involved in the task.

The identified mathematical practices, coherence connections and clarifications are possible suggestions; however, they are not the only pathways.

Operations and Algebraic Thinking

Standards for Mathematical Practice

MP.1. Make sense of problems and persevere in solving them.
MP.2. Reason abstractly and quantitatively.
MP.3. Construct viable arguments and critique the reasoning of others.
MP.4. Model with mathematics.

MP.5. Use appropriate tools strategically.
MP.6. Attend to precision.
MP.7. Look for and make use of structure.
MP.8. Look for and express regularity in repeated reasoning.

Cluster: Understand and apply properties of operations and the relationship between addition and subtraction.

Standards

KY.1.OA. 3 Apply properties of operations as strategies to add and subtract.

MP. 2, MP. 7

KY.1.OA. 4 Understand subtraction as an unknown-addend problem.

MP. 2, MP. 7

Clarifications

Students are not responsible for knowing the formal language of the different properties, but have the conceptual understanding of each property (commutative and associative property).

Coherence KY.K.OA. $2 \rightarrow$ KY.1.OA. $3 \rightarrow$ KY.2.NBT. 9
Students connect addition and subtraction as operations. (I can solve 10-8
by thinking about what adds to 8 to make $10[\ldots+8=10]$.)
Coherence KY.K.OA. $2 \rightarrow$ KY.1.OA. $4 \rightarrow$ KY.2.NBT. 9

Attending to the Standards for Mathematical Practice

Students understand an equation such as $8+3=11$, the numerals " 8 " and 3 " represent two quantities combine to form a combined quantity of 11 . Students explain the order in which the addends are combined does not affect the resulting sum (MP.3). Students generalize this idea (the commutative property) to all addition situations, for example, explaining that switching two piles of counters doesn't change how many are there (MP.7). Similarly, students notice the order and manner in which multiple addends are combined does not affect the sum (the associative property). Students reason 10-8=? also means $8+?=10$; therefore, they solve the problem by asking themselves what is the number added to 8 to make 10 (MP.2).

Standards for Mathematical Practice

MP.1. Make sense of problems and persevere in solving them.
MP.2. Reason abstractly and quantitatively.
MP.3. Construct viable arguments and critique the reasoning of others. MP.4. Model with mathematics.

Cluster: Add and subtract within 20.

Standards	Clarifications
KY.1.OA. 5 Relate counting to addition and subtraction. MP.5, MP. 8	Strategies used when relating addition to subtraction: counting all (addition); counting on (addition); counting all (subtraction); counting back (subtraction); counting on (subtraction). $\text { KY.K.CC.4 } \rightarrow \text { KY.1.OA.5 } \rightarrow \text { KY.1.OA. } 6$
KY.1.OA. 6 Add and subtract within 20. a. Fluently add and subtract within 10. b. Add and subtract within 20, demonstrating fluency for addition and subtraction within 10 . Use strategies such as counting on; making 10; decomposing a number leading to a 10 ; using the relationship between addition and subtraction; creating equivalent but easier or known sums. MP.2, MP.7, MP. 8	Students solve addition and subtraction tasks (with sums and differences within 10) efficiently, accurately, flexibly and appropriately. Being fluent means students choose flexibly among methods and strategies to solve contextual and mathematical problems, they understand and explain their approaches, and they produce accurate answers efficiently. Students make $10(8+6=8+2+4=10+4=14)$; decompose a number leading to a ten ($13-4=13-3-1=10-1=9$); know $8+4=12$ and know $12-8=4$ using the relationship between addition and subtraction; create equivalent, but easier or known sums, adding $6+7$ by creating $6+6+1=12+1=13$. Note: Reaching fluency is an ongoing process that will take much of the year. KY.1.NBT. 4 Coherence KY.K.OA. $2 \rightarrow$ KY.1.OA. $6 \rightarrow$ KY.2.OA. 2 KY.K.OA. 3

	KY.K.OA. 4 KY.K.OA. 5
Attending to the Standards for Mathematical Practice	
Students use tools to show sums and differences (MP.5). Students notice when they count two groups and count the total number of items, the total count is the sum (MP.8). Students employ counting strategies (forward and/or back) as strategies for adding and subtracting (MP.2). As students count on, they count on from the larger addend (solving $9+3$ instead of $3+9$) recognizing this is more efficient and addition is commutative (MP.7). Students recognize sums such as $8+9$ are not efficiently solved by counting on and number relationships can be used to determine the sum. With repeated experiences, students notice relationships such as $9+8=10+7$ (MP.8).	

The identified mathematical practices, coherence connections and clarifications are possible suggestions; however, they are not the only pathways.

Operations and Algebraic Thinking	
Standards for Mathematical Practice	
MP.1. Make sense of problems and persevere in solving them. MP.2. Reason abstractly and quantitatively. MP.3. Construct viable arguments and critique the reasoning of others. MP.4. Model with mathematics.	MP.5. Use appropriate tools strategically. MP.6. Attend to precision. MP.7. Look for and make use of structure. MP.8. Look for and express regularity in repeated reasoning.
Cluster: Work with addition and subtraction equations.	
Standards	Clarifications
KY.1.OA. 7 Understand the meaning of the equal sign and determine if equations involving addition and subtraction are true or false. MP. 2, MP. 3	Students determine which of the following equations are true and which are false: $6=6,7=8-1,5+2=2+5,4+1=5+2$. Coherence KY.1.OA. $7 \rightarrow$ KY.2.OA. 4
KY.1.OA. 8 Determine the unknown whole number in an addition or subtraction equation relating three whole numbers. MP. 1, MP. 2	Students determine the unknown number that makes the equation true in each of the equations $8+?=11,5=?-3,6+6=$ \qquad . KY.1.OA. 7 Coherence KY.1.OA. 8
Attending to the Standards for Mathematical Practice	
Students make sense of equations such as $4+6=7+3$, interpreting the (MP.1). Students justify whether an equation is true or false, not just by equation $10+5=6+11$ students recognize both addends on the right a reasoning is used to solve missing-value problems such as $8+5=$ \qquad $+6$ be one less than 8 (MP.2).	qual sign to mean expressions on each side represent the same quantity olving both sides, but by using relational thinking. For example, in the larger than the ones on the left, so the equation is false (MP.3). This Students reason that because 6 is one more than 5 , the missing addend must

The identified mathematical practices, coherence connections and clarifications are possible suggestions; however, they are not the only pathways.

Numbers and Operations in Base Ten	
Standards for Mathematical Practice	
MP.1. Make sense of problems and persevere in solving them. MP.2. Reason abstractly and quantitatively. MP.3. Construct viable arguments and critique the reasoning of others. MP.4. Model with mathematics.	MP.5. Use appropriate tools strategically. MP.6. Attend to precision. MP.7. Look for and make use of structure. MP.8. Look for and express regularity in repeated reasoning.
Cluster: Extend the counting sequence.	
Standards	Clarifications
KY.1.NBT. 1 Count and represent numbers. a. Count forward to and backward from 120, starting at any number less than 120. b. In this range, read and write numerals and represent a number of objects with a written numeral. MP.2, MP.5, MP. 8	Students use strategies based on place value, properties of operations and the relationship between addition and subtraction; however, when solving any problem, students choose any strategy. A written representation shows a strategy using words, pictures and/or numbers. Coherence KY.K.CC. $2 \rightarrow$ KY.1.NBT.1 \rightarrow KY.2.NBT. 2
Attending to the Standards for Mathematical Practice	
Students recognize repeated sequences emerge as they cross into decade families and use those patterns to start a count from anywhere between 0 and 120 (MP.8). For example, counting within the 20s decade family involves repeated counting by ones in the range of 0-9 (20, 21, 22, 23...) and this pattern holds even as they go over $100(100,101,102,103 \ldots)$ (MP.8). In creating a representation of a number, students select a tool or picture that can be grouped to show tens and ones (MP.5). For example, students bundle sticks into 2 bundles of 10 and 3 remaining sticks, connect this to the numeral " 23. "	

The identified mathematical practices, coherence connections and clarifications are possible suggestions; however, they are not the only pathways.

Standards for Mathematical Practice

MP.1. Make sense of problems and persevere in solving them.
MP.2. Reason abstractly and quantitatively.
MP.3. Construct viable arguments and critique the reasoning of others.
MP.4. Model with mathematics.
Cluster: Understand place value.

Standards

KY.1.NBT. 2 Understand the two-digits of a two-digit number represent amounts of tens and ones. Understand the following as special cases:
a. 10 can be thought of as a bundle of ten ones - called a "ten."
b. The numbers from 11 to 19 are composed of a ten and one, two, three, four, five, six, seven, eight or nine ones.
c. The numbers $10,20,30,40,50,60,70,80,90$ refer to one, two, three, four, five, six, seven, eight or nine tens (and 0 ones).

MP.5, MP. 7

KY.1.NBT. 3 Compare two two-digit numbers based on meanings of the tens and ones digits, recording the results of comparisons with the symbols $>,=$, and $<$.
MP. 2

MP.5. Use appropriate tools strategically.
MP.6. Attend to precision.
MP.7. Look for and make use of structure.
MP.8. Look for and express regularity in repeated reasoning.

Abstract

Clarifications Students use concrete models and drawings, as well as strategies based on place value, properties of operations, and the relationship between addition and subtraction. When solving any problem, students choose to use a concrete model or a drawing. Their strategy is based on place value, properties of operations or the relationship between addition and subtraction. A written representation shows a strategy using words, pictures and/or numbers.

Coherence KY.K.NBT.1 \rightarrow KY.1.NBT. $2 \rightarrow$ KY.2.NBT. 1
Students use tools such as objects on place value charts, tens frames, hundreds charts and number lines to compare two two-digit numbers. Students describe the comparisons using terms such as greater than, more than, less than, fewer than, equal to and same as. Students justify their reasoning. Students compare two two-digit numbers written as numerals.

Coherence KY.K.CC. $7 \rightarrow$ KY.1.NBT. $3 \rightarrow$ KY.2.NBT. 4

Attending to the Standards for Mathematical Practice

Students understand the individual digits in a two-digit numeral each represent units of ten and one respectively. Students use tools to represent numbers, selecting tools such as popsicle sticks, linking cubes and straws that can physically be grouped in tens (MP.5). In representing numbers with concrete tools, students see one ten unit (a bundle) can be thought of as " 10 , two as twenty and so forth (MP.7). When comparing two two-digit numbers, students interpret the inherent value of each digit (22 is two tens with two remaining ones) and determine which number is larger (MP.2). For example, students realize that 32 is greater than 23 because of the value of its digits.

The identified mathematical practices, coherence connections and clarifications are possible suggestions; however, they are not the only pathways.

Standards for Mathematical Practice

MP.1. Make sense of problems and persevere in solving them.
MP.2. Reason abstractly and quantitatively.
MP.3. Construct viable arguments and critique the reasoning of others.
MP.4. Model with mathematics.

MP.5. Use appropriate tools strategically.
MP.6. Attend to precision.
MP.7. Look for and make use of structure.
MP.8. Look for and express regularity in repeated reasoning.

Cluster: Use place value understanding and properties of operations to add and subtract.

Standards

KY.1.NBT. 4 Add within 100 including adding a two-digit number and a one-digit number. Add a two-digit number and a multiple of 10 .
a. Add within 100 using...

- concrete models or drawings;
- strategies based on place value;
- properties of operations;
- the relationship between addition and subtraction.
b. Relate the addition strategy to a written method and explain the reasoning used. Understand that in adding two-digit numbers, one adds tens and tens, ones and ones; and sometimes it is necessary to compose a ten.

MP.7, MP.2, MP. 3

KY.1.NBT. 5 Given a two-digit number, mentally find 10 more or 10 less than the number, without having to count; explain the reasoning used.

MP.2, MP. 8

KY.1.NBT. 6 Subtract multiples of 10 in the range 10-90 from multiples of 10 in the range 10-90 (positive or zero differences).
a. Subtract using:

- concrete models or drawings;
- strategies based on place value;
- properties of operations;
- the relationship between addition and subtraction
b. Relate the subtraction strategy to a written method and explain the reasoning used.

Clarifications

Students model addition examples with sums to 100 using concrete materials, pictures and numerals. Students use mental computation strategies to develop conceptual understanding and number sense around adding one- and two-digit numbers.

KY.2.NBT. 7
Coherence KY.1.NBT.4 \rightarrow KY.2.NBT. 5

Students use materials and strategies to add or subtract 10 from any given number in the range 1 to 100.

Coherence KY.1.NBT.5 \rightarrow KY.2.NBT. 8
Students use strategies to subtract groups of ten from more tens. $80-30$ can be expressed at 8 tens with 3 tens taken away which leaves 5 tens. Students explore using hundreds chart, base ten blocks, number lines and other tools.

Coherence KY.1.NBT.6 \rightarrow KY.2.NBT. 8

MP.3, MP. 5

Attending to the Standards for Mathematical Practice

Students recognize when solving a problem such as $33+20$ that the 3 in the ones place will not change, but the 3 in the tens place will; additionally, they will reason this is because they are adding two tens (MP.7, MP.8). Students generalize this idea, explaining units of tens can be added or subtracted and apply this idea to adding multiples of 10 (MP.2). Students select a strategy for adding or subtracting, including the following: using tools, drawing pictures, jumps on a number line and/or jumps on a hundred chart. They explain which tool or model they selected, how they reasoned about the problem and how they know their answer is correct (MP.1, MP.3). Students apply strategies used to solve single-digit addition/subtraction situations in the range of 1-9 to solve addition/subtraction situations in the range of 10-90. For example, extending the Make 10 Strategy to a Make 40 strategy for adding 38 + 9 (MP.2).

The identified mathematical practices, coherence connections and clarifications are possible suggestions; however, they are not the only pathways.

Measurement and Data	
Standards for Mathematical Practice	
MP.1. Make sense of problems and persevere in solving them. MP.2. Reason abstractly and quantitatively. MP.3. Construct viable arguments and critique the reasoning of others. MP.4. Model with mathematics.	MP.5. Use appropriate tools strategically. MP.6. Attend to precision MP.7. Look for and make use of structure. MP.8. Look for and express regularity in repeated reasoning.
Cluster: Measure lengths indirectly and by iterating length units.	
Standards	Clarifications
KY.1.MD. 1 Order three objects by length; compare the lengths of two objects indirectly by using a third object. MP. 6	Students use nonstandard tools to estimate and measure objects. They compare lengths of three different objects. Coherence KY.K.MD. $1 \rightarrow$ KY.1.MD. $1 \rightarrow$ KY.2.MD. 4
KY.1.MD. 2 Express the length of an object as a whole number of samesize length units, by laying multiple copies of a shorter object (the length unit) end to end with no gaps or overlaps. MP.2, MP. 5	Students measure numerous items with different sizes of nonstandard units. The smaller the unit, the more units needed to measure the object. Coherence KY.1.MD. $2 \rightarrow$ KY.2.MD. 2
Attending to the Standards for Mathematical Practice	
Students compare and order objects by analyzing their lengths. For examp string to compare each desk and determine its relative height (MP.2). St precise language, understanding "bigger" and "smaller" are not as specific Students understand they use an object as a unit of measure. For examp use a pencil to measure the length of a book and a desk. If it takes two desk, students can determine the desk is longer than the book (MP.2).	e, they wonder which desk is taller and use their leg or a piece of ents describe the objects' length in relation to one another using as "longer" and "shorter" for describing the attribute of length (MP.6). , a paperclip can be used to see how long a pencil is (MP.5). Students cils for the length of the book and four pencils for the length of the

The identified mathematical practices, coherence connections and clarifications are possible suggestions; however, they are not the only pathways.

Measurement and Data	
Standards for Mathematical Practice	
MP.1. Make sense of problems and persevere in solving them. MP.2. Reason abstractly and quantitatively. MP.3. Construct viable arguments and critique the reasoning of others. MP.4. Model with mathematics.	MP.5. Use appropriate tools strategically. MP.6. Attend to precision. MP.7. Look for and make use of structure. MP.8. Look for and express regularity in repeated reasoning.
Cluster: Work with time and money.	
Standards	Clarifications
KY.1.MD. 3 Assign values to time and money. a. Tell and write time in hours and half-hours using analog and digital clocks. b. Identify the coins by values (penny, nickel, dime, quarter). MP.6, MP. 8	a. Students understand 60 minutes $=1$ hour. b. A penny has a value of one cent; a nickel has a value of five cents; a dime has a value of 10 cents; a quarter has a value of 25 cents. Note: This standard requires students to identify coins by name along with their corresponding value only (e.g. a quarter is worth twenty five cents). In grade one, coins should not be used as models or manipulatives for the purposes of teaching place value, counting (by ones or skip counting), or addition and subtraction. KY.2.MD. 7 Coherence KY.K.MD.4 \rightarrow KY.1.MD. $3 \rightarrow$ KY.2.MD. 8
Attending to the Standards for Mathematical Practice	
Students realize the specific logic of an analog clock, recognizing the shorter moving part on an analog clock is called the "hour hand" and its position (relative to the encircling numerals) indicates what hour it is (MP.6). Students recognize patterns in how the hour and minute hands operate. For example, they notice at 4:30, the minute hand is halfway around the clock (at the six) and the hour hand is halfway between the four and the five (MP.8). Students understand four-thirty is expressed numerically using a digital clock (MP.2). With money, students use appropriate terms to describe coins and connect the coin names to their values (MP.2, MP.6).	

The identified mathematical practices, coherence connections and clarifications are possible suggestions; however, they are not the only pathways.

Measurement and Data	
Standards for Mathematical Practice	
MP.1. Make sense of problems and persevere in solving them. MP.2. Reason abstractly and quantitatively. MP.3. Construct viable arguments and critique the reasoning of others. MP.4. Model with mathematics.	MP.5. Use appropriate tools strategically. MP.6. Attend to precision. MP.7. Look for and make use of structure. MP.8. Look for and express regularity in repeated reasoning.
Cluster: Understand and apply the statistics process.	
Standards	Clarifications
KY.1.MD. 4 Investigate questions involving categorical data. a. Pose a question that can be answered by gathering data. b. Determine strategy for gathering data from peers. c. Organize and represent data in a table/chart with up to three categories. d. Interpret data to answer questions about the table/chart that connects to the question posed, including total number of data points, how many in each category and how many more or less are in one category than in another. MP.1, MP.3, MP.4, MP. 6	Students create a table or chart to organize data. Coherence KY.1.MD.4 \rightarrow KY.2.MD. 10
Attending to the Standards for Mathematical Practice	
Students create carefully worded questions to be answered by their peers way each classmate gets to school (walk, ride bus, car-rider). In both ga makes sense to them and helps them to answer the question posed (M knowing the table/chart provides insights to answer their question (MP other student observations, ultimately explaining what they learned ab students take a bus to school using the data in the table/chart.	s and gather data (MP.6). For example, a student may wonder about the ering data and creating a representation of data, students design what 1). Students create a table/chart representing the data collected,). Students make observations from the data and listen and critique ut the question they posed (MP.3). For example, students observe most

Geometry	
Standards for Mathematical Practice	
MP.1. Make sense of problems and persevere in solving them. MP.2. Reason abstractly and quantitatively. MP.3. Construct viable arguments and critique the reasoning of others. MP.4. Model with mathematics.	MP.5. Use appropriate tools strategically. MP.6. Attend to precision. MP.7. Look for and make use of structure. MP.8. Look for and express regularity in repeated reasoning.
Cluster: Reason with shapes and their attributes.	
Stand	Clarification
KY.1.G.1 Distinguish between defining attributes versus non-defining attributes; build and draw shapes to possess defining attributes. MP. 7	Defining attributes include, but are not limited to, number of sides or open/closed shapes. Non-defining attributes include, but are not limited to, color, orientation or overall size.
	herence KY.K.G.
KY.1.G. 2 Compose shapes. a. Compose two-dimensional shapes to create rectangles, squares, trapezoids, triangles, half-circles and quarter-circles composite shape and compose new shapes from the composite shapes. b. Use three-dimensional shapes (cubes, right rectangular prisms, right circular cones and right circular cylinders) to create a composite shape and compose new shapes from the composite shapes. MP.1, MP. 4	Students do not need to learn formal names such as "right rectangular prisms." b.
KY.1.G.3 Partition circles and rectangles into two and four equal shares, describe the shares using the words halves, fourths and quarters, and use the phrases half of, fourth of and quarter of. Describe the whole as two of or four of the shares. Understand for these examples that decomposing into more equal shares creates smaller shares. MP.3, MP. 6	Students see the relationship of taking the same shape and partitioning it into equal pieces. For example, they compare the size of the pieces when it's half of a shape or a fourth of the shape.

The identified mathematical practices, coherence connections and clarifications are possible suggestions; however, they are not the only pathways.

Attending to the Standards for Mathematical Practice

Through analyzing many shapes and making sense of what they have in common, students determine what attributes define a shape versus attributes that do not define a shape (MP.7). For example, students describe defining characteristics of a triangle such as straight sides, three sides, three angles or three points and describe non-defining characteristics such as blue, big or heavy (MP.3, MP.7). Students use knowledge of defining attributes to build and/or draw examples and non-examples of these shapes, attending to those attributes which define the shape (MP.6). Students may compare their drawings and discover a square is a square regardless of its color, size or orientation (MP.7).

The identified mathematical practices, coherence connections and clarifications are possible suggestions; however, they are not the only pathways.

Table 1
Common Addition and Subtraction Situations ${ }^{1}$

	Result Unknown	Change Unknown	Start Unknown
Add To	Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are on the grass now? $2+3=?$	Two bunnies were sitting on the grass. Some more bunnies hopped there. Then there were five bunnies. How many bunnies hopped over to the first two? $2+?=5$	Some bunnies were sitting on the grass. Three more bunnies hopped there. Then there were five bunnies. How many bunnies were on the grass before? $?+3=5$
Take From	Five apples were on the table. I ate two apples. How many apples are on the table now? $5-2=?$	Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? $5-?=3$	Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? $?-2=3$
	Total Unknown	Addend Unknown	Both Addends Unknown ${ }^{3}$
Put Together/ Take Apart ${ }^{2}$	Three red apples and two green apples are on the table. How many apples are on the table? $3+2=?$	Five apples are on the table. Three are red and the rest are green. How many apples are green? $3+?=5,5-3=?$	Grandma has five flowers. How many can she put in her red vase and how many in her blue vase? $\begin{aligned} & 5=0+5,5=5+0 \\ & 5=1+4,5=4+1 \\ & 5=2+3,5=3+2 \end{aligned}$
	Difference Unknown	Bigger Unknown	Smaller Unknown
Compare ${ }^{4}$	("How many more?" version): Lucy has two apples. Julie has five apples. How many more apples does Lucy have than Julie? ("How many fewer?" version): Lucy has two apples. Julie has five apples. How many fewer apples does Lucy have than Julie? $2+?=5,5-2=?$	(Version with "more"): Julie has three more apples than Lucy. Lucy has two apples. How many apples does Julie have? (Version with "fewer"): Lucy has three fewer apples than Julie. Lucy has two apples. How many apples does Julie have? $2+3=?, 3+2=?$	(Version with "more"): Julie has three more apples than Lucy. Julie has five apples. How many apples does Lucy have? (Version with "fewer"): Lucy has three fewer apples than Julie. Julie has five apples. How many apples does Lucy have? $5-3=?, ?+3=5$

 students in grade 1 work with but do not need to master until grade 2.
${ }^{1}$ Adapted from Box 2-4 of National Research Council (2009, op. cit., pp. 32, 33).
 always mean makes or results in but always does mean is the same number as.

 difficult.

Table 2
Common Multiplication and Division Situations ${ }^{1}$

	Unknown Product	Group Size Unknown	Number of Groups Unknown
	$3 \times 6=$?	$3 \times$? = 18 and $18 \div 3=$?	$? \times 6=18$ and $18 \div 6=?$
Equal Groups	There are 3 bags with 6 plums in each bag. How many plums are there in all? Measurement example: you need 3 lengths of string, each 6 inches long. How much string will you need all together?	If 18 plums are shared equally into 3 bags, then how many plums will be in each bag? Measurement example: you have 18 inches of string which you will cut into 3 equal pieces. How long will each piece of string be?	If 18 plums are to be packed 6 to a bag, then how many bags are needed? Measurement example: you have 18 inches of string which you will cut into pieces that are 6 inches long. How many pieces of string will you have?
Arrays, ${ }^{2}$ Area ${ }^{3}$	There are three rows of apples with 6 apples in each row. How many apples are there? Area example: what is the area of a 3 cm by 6 cm triangle?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row? Area example: a rectangle has area of 18 square centimeters. If one side is 3 cm long, how long is a side next to it?	If 18 apples are arranged into equal rows of 6 apples, how many rows will there be? Area example: a rectangle has area of 18 square centimeters. If one side is 6 cm long, how long is the side next to it?
Compare	A blue hat costs $\$ 6$. A red hat costs 3 times as much as the blue hat. How much does the red hat cost? Measurement example: a rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?	A red hat costs $\$ 18$ and that is 3 times as much as a blue hat costs. How much does a blue hat cost? Measurement example: a rubber band is stretched to be 18 cm long and is 3 times as long as it was at first. How long was the rubber band at first?	A red hat costs $\$ 18$ and a blue hat costs $\$ 6$. How many times as much does the red hat cost as the blue? Measurement example: a rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?
General	$a \times b=$?	$a \times ?=p$ and $p \div a=$?	$? \times b=p$ and $p \div b=?$
${ }^{1}$ The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples. ${ }^{2}$ The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: the apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable. ${ }^{3}$ Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations.			

Table 3

Properties of Operations

The variables a, b and c stand for arbitrary numbers in a given number system.
The properties of operations apply to the rational number system, the real number system and the complex number system.

Associative property of addition	$(a+b)+c=a+(b+c)$
Commutative property of addition	$a+b=b+a$
Additive identity property of 0	$a+0=0+a=a$
Existence of additive inverses	For every a there exists -a so that $a+(-a)=(-a)+a=0$
Associative property of multiplication	$(a \times b) \times c=a x(b \times c)$
Commutative property of multiplication	$a \times b=b \times a$
Multiplicative identity property of 1	$a \times 1=1 \times a=a$
Existence of multiplicative inverses	For every $a \neq 0$ there exists $\frac{1}{a}$ so that $a \times \frac{1}{a}=\frac{1}{a} \times a=1$
Distributive property of multiplication over addition	$a \times(b+c)=a \times b+a \times c$

Table 4
Properties of Equality
The variables a, b and c stand for arbitrary numbers in the rational, real or complex number systems.

Reflexive property of equality	$a=a$
Symmetric property of equality	If $a=b$, then $b=a$
Transitive property of equality	If $a=b$ and $b=c$, then $\mathrm{a}=\mathrm{c}$
Addition property of equality	If $\mathrm{a}=\mathrm{b}$, then $\mathrm{a}+\mathrm{c}=\mathrm{b}+\mathrm{c}$
Subtraction property of equality	If $\mathrm{a}=\mathrm{b}$, then $\mathrm{a}-\mathrm{c}=\mathrm{b}-\mathrm{c}$
Multiplication property of equality	If $\mathrm{a}=\mathrm{b}$, then $\mathrm{a} \times \mathrm{c}=\mathrm{b} \times \mathrm{c}$
Division property of equality	If $\mathrm{a}=\mathrm{b}$ and $\mathrm{c} \neq 0$, then $\mathrm{a} \div \mathrm{c}=\mathrm{b} \div \mathrm{c}$
Substitution property of equality	If $\mathrm{a}=\mathrm{b}$, then b may be substituted for a in any expression
containing a.	

Table 5

Properties of Inequality

The variables a, b and c stand for arbitrary numbers in the rational or real number systems.

Exactly one of the following is true: $a<b, a=b, a>b$
If $a>b$ and $b>c$ then $a>c$
If $a>b$, then $b<a$
If $a>b$, then $-a<-b$
If $a>b$, then $a \pm c>b \pm c$
If $a>b$ and $c>0$, then $a \times c>b \times c$
If $a>b$ and $c<0$, then $a \times c<b \times c$
If $a>b$ and $c>0$, then $a \div c>b \div c$
If $a>b$ and $c<0$, then $a \div c<b \div c$

Table 6

Fluency Standards across All Grade Levels

Grade	Coding	Fluency Standards
K	KY.K.OA. 5	Fluently add and subtract within 5.
1	KY.1.OA. 6	Fluently add and subtract within 10.
2	$\begin{aligned} & \hline \text { KY.2.OA. } 2 \\ & \text { KY.2.NBT. } 5 \end{aligned}$	Fluently add and subtract within 20. Fluently add and subtract within 100.
3	$\begin{aligned} & \text { KY.3.OA. } 7 \\ & \text { KY.3.NBT. } 2 \end{aligned}$	Fluently multiply and divide within 100. Fluently add and subtract within 1000.
4	KY.4.NBT.	Fluently add and subtract multi-digit whole numbers using an algorithm.
5	KY.5.NBT. 5	Fluently multiply multi-digit whole numbers (not to exceed four-digit by two-digit multiplication) using an algorithm.
6	$\begin{aligned} & \text { KY.6.NS. } 2 \\ & \text { KY.6.NS.3 } \\ & \text { KY.6.EE. } 2 \end{aligned}$	Fluently divide multi-digit numbers using an algorithm. Fluently add, subtract, multiply and divide multi-digit decimals using an algorithm for each operation. Write, read and evaluate expressions in which letters stand for numbers.
7	$\begin{aligned} & \hline \text { KY.7.NS.1d } \\ & \text { KY.7.NS.2c } \end{aligned}$	Apply properties of operations as strategies to add and subtract rational numbers. Apply properties of operations as strategies to multiply and divide rational numbers.
8	KY.8.EE. 7	Solve linear equations in one variable.
Algebra	$\text { KY.HS.A. } 2$ KY.HS.A. 19	Use the structure of an expression to identify ways to rewrite it and consistently look for opportunities to rewrite expressions in equivalent forms. Solve quadratic equations in one variable.
Functions	KY.HS.F. 4 KY.HS.F. 8	Graph functions expressed symbolically and show key features of the graph both with and without technology (i.e., computer, graphing calculator) Understand the effects of transformations on the graph of a function.
Geometry	KY.HS.G. 21 KY.HS.G.11c KY.HS.G.12c	Use coordinates to justify and prove simple geometric theorems algebraically. Use similarity criteria for triangles to solve problems in geometric figures. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.

