Clarity for Learning		
Standard KY.HS.A.20 (Algebra 1) Solve systems of linear equations in two variables.		
Concepts (Nouns) equation in two variables standard form of an equation table intersection parallel	Skills (Verbs) solve graph substitute eliminate multiply	
Learning Progressions (Unpacking the standard) Prerequisites:		

- Substitution
- Solving linear equations and inequalities
- Graphing lines in slope-intercept and standard form

Grade Level Skills:

- Determine if an ordered pair is a solution to a system of equations.
- Determine if a system has one solution, no solution, or infinitely many solutions.
- Use tables to estimate the solution to a system of equations (include use of graphing calculator and Desmos).
- Solve a system of equations by graphing (use graphing calculator and Desmos).
- Solve a system of equations by substitution.
- Solve a system of equations by elimination (possibly requiring multiplication).
- Solve real-world problems using systems of equations.
- Solve systems of linear equations in two variables.
- Understand a system of two equations in two variables has the same solution as a new system formed by replacing one of the original equations with an equivalent equation.
- Solve systems of linear equations with graphs, substitution, and elimination, focusing on pairs of linear equations in two variables.

Clarifications:

Students will realize that systems of equations can have no, one, or infinitely many solutions. Tables and graphs may produce estimated solutions rather than exact solutions.

Learning Intentions (I am learning to)	Success Criteria (I know I'm successful when)
Solve systems of linear equations in two variables.	 I can graph systems of linear equations in two variables to find an approximate solution.
	 I can write a system of linear equations in two variables to represent real-world problems
	 I can use the substitution method to solve systems of equations.
	 I can represent situations as systems of equations and interpret solutions as viable/nonviable options for the situation.
	 I can solve systems of linear equations by elimination and prove that the sum of one equation and a multiple of the other produces a system with the same solutions as the original system.
	 I can represent constraints with a system of equations in a modeling context.